InsecureSHA1PRNGKeyDerivator.java 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
package com.ectrip.cyt.utils;

/**
 * @author: WJF
 * @date: 2020-08-18 14:34 星期二
 * @description: 适配 android9.0 以上的加解密方式
 */
public class InsecureSHA1PRNGKeyDerivator {
    /**
     * Only public method. Derive a key from the given seed.
     * <p>
     * Use this method only to retrieve encrypted data that couldn't be retrieved otherwise.
     *
     * @param seed           seed used for the random generator, usually coming from a password
     * @param keySizeInBytes length of the array returned
     */
    public static byte[] deriveInsecureKey(byte[] seed, int keySizeInBytes) {
        InsecureSHA1PRNGKeyDerivator derivator = new InsecureSHA1PRNGKeyDerivator();
        derivator.setSeed(seed);
        byte[] key = new byte[keySizeInBytes];
        derivator.nextBytes(key);
        return key;
    }

    // constants to use in expressions operating on bytes in int and long variables:
    // END_FLAGS - final bytes in words to append to message;
    //             see "ch.5.1 Padding the Message, FIPS 180-2"
    // RIGHT1    - shifts to right for left half of long
    // RIGHT2    - shifts to right for right half of long
    // LEFT      - shifts to left for bytes
    // MASK      - mask to select counter's bytes after shift to right
    private static final int[] END_FLAGS = {0x80000000, 0x800000, 0x8000, 0x80};
    private static final int[] RIGHT1 = {0, 40, 48, 56};
    private static final int[] RIGHT2 = {0, 8, 16, 24};
    private static final int[] LEFT = {0, 24, 16, 8};
    private static final int[] MASK = {0xFFFFFFFF, 0x00FFFFFF, 0x0000FFFF,
            0x000000FF};
    // HASHBYTES_TO_USE defines # of bytes returned by "computeHash(byte[])"
    // to use to form byte array returning by the "nextBytes(byte[])" method
    // Note, that this implementation uses more bytes than it is defined
    // in the above specification.
    private static final int HASHBYTES_TO_USE = 20;
    // value of 16 defined in the "SECURE HASH STANDARD", FIPS PUB 180-2
    private static final int FRAME_LENGTH = 16;
    // miscellaneous constants defined in this implementation:
    // COUNTER_BASE - initial value to set to "counter" before computing "nextBytes(..)";
    //                note, that the exact value is not defined in STANDARD
    // HASHCOPY_OFFSET   - offset for copy of current hash in "copies" array
    // EXTRAFRAME_OFFSET - offset for extra frame in "copies" array;
    //                     as the extra frame follows the current hash frame,
    //                     EXTRAFRAME_OFFSET is equal to length of current hash frame
    // FRAME_OFFSET      - offset for frame in "copies" array
    // MAX_BYTES - maximum # of seed bytes processing which doesn't require extra frame
    //             see (1) comments on usage of "seed" array below and
    //             (2) comments in "engineNextBytes(byte[])" method
    //
    // UNDEFINED  - three states of engine; initially its state is "UNDEFINED"
    // SET_SEED     call to "engineSetSeed"  sets up "SET_SEED" state,
    // NEXT_BYTES   call to "engineNextByte" sets up "NEXT_BYTES" state
    private static final int COUNTER_BASE = 0;
    private static final int HASHCOPY_OFFSET = 0;
    private static final int EXTRAFRAME_OFFSET = 5;
    private static final int FRAME_OFFSET = 21;
    private static final int MAX_BYTES = 48;
    private static final int UNDEFINED = 0;
    private static final int SET_SEED = 1;
    private static final int NEXT_BYTES = 2;
    // Structure of "seed" array:
    // -  0-79 - words for computing hash
    // - 80    - unused
    // - 81    - # of seed bytes in current seed frame
    // - 82-86 - 5 words, current seed hash
    private transient int[] seed;
    // total length of seed bytes, including all processed
    private transient long seedLength;
    // Structure of "copies" array
    // -  0-4  - 5 words, copy of current seed hash
    // -  5-20 - extra 16 words frame;
    //           is used if final padding exceeds 512-bit length
    // - 21-36 - 16 word frame to store a copy of remaining bytes
    private transient int[] copies;
    // ready "next" bytes; needed because words are returned
    private transient byte[] nextBytes;
    // index of used bytes in "nextBytes" array
    private transient int nextBIndex;
    // variable required according to "SECURE HASH STANDARD"
    private transient long counter;
    // contains int value corresponding to engine's current state
    private transient int state;
    /**
     * constant defined in "SECURE HASH STANDARD"
     */
    private static final int H0 = 0x67452301;
    /**
     * constant defined in "SECURE HASH STANDARD"
     */
    private static final int H1 = 0xEFCDAB89;
    /**
     * constant defined in "SECURE HASH STANDARD"
     */
    private static final int H2 = 0x98BADCFE;
    /**
     * constant defined in "SECURE HASH STANDARD"
     */
    private static final int H3 = 0x10325476;
    /**
     * constant defined in "SECURE HASH STANDARD"
     */
    private static final int H4 = 0xC3D2E1F0;
    /**
     * offset in buffer to store number of bytes in 0-15 word frame
     */
    private static final int BYTES_OFFSET = 81;
    /**
     * offset in buffer to store current hash value
     */
    private static final int HASH_OFFSET = 82;
    /**
     * # of bytes in H0-H4 words; <BR>
     * in this implementation # is set to 20 (in general # varies from 1 to 20)
     */
    private static final int DIGEST_LENGTH = 20;

    // The "seed" array is used to compute both "current seed hash" and "next bytes".
    //
    // As the "SHA1" algorithm computes a hash of entire seed by splitting it into
    // a number of the 512-bit length frames (512 bits = 64 bytes = 16 words),
    // "current seed hash" is a hash (5 words, 20 bytes) for all previous full frames;
    // remaining bytes are stored in the 0-15 word frame of the "seed" array.
    //
    // As for calculating "next bytes",
    // both remaining bytes and "current seed hash" are used,
    // to preserve the latter for following "setSeed(..)" commands,
    // the following technique is used:
    // - upon getting "nextBytes(byte[])" invoked, single or first in row,
    //   which requires computing new hash, that is,
    //   there is no more bytes remaining from previous "next bytes" computation,
    //   remaining bytes are copied into the 21-36 word frame of the "copies" array;
    // - upon getting "setSeed(byte[])" invoked, single or first in row,
    //   remaining bytes are copied back.
    private InsecureSHA1PRNGKeyDerivator() {
        seed = new int[HASH_OFFSET + EXTRAFRAME_OFFSET];
        seed[HASH_OFFSET] = H0;
        seed[HASH_OFFSET + 1] = H1;
        seed[HASH_OFFSET + 2] = H2;
        seed[HASH_OFFSET + 3] = H3;
        seed[HASH_OFFSET + 4] = H4;
        seedLength = 0;
        copies = new int[2 * FRAME_LENGTH + EXTRAFRAME_OFFSET];
        nextBytes = new byte[DIGEST_LENGTH];
        nextBIndex = HASHBYTES_TO_USE;
        counter = COUNTER_BASE;
        state = UNDEFINED;
    }

    /*
     * The method invokes the SHA1Impl's "updateHash(..)" method
     * to update current seed frame and
     * to compute new intermediate hash value if the frame is full.
     *
     * After that it computes a length of whole seed.
     */
    private void updateSeed(byte[] bytes) {
        // on call:   "seed" contains current bytes and current hash;
        // on return: "seed" contains new current bytes and possibly new current hash
        //            if after adding, seed bytes overfill its buffer
        updateHash(seed, bytes, 0, bytes.length - 1);
        seedLength += bytes.length;
    }

    /**
     * Changes current seed by supplementing a seed argument to the current seed,
     * if this already set;
     * the argument is used as first seed otherwise. <BR>
     * <p>
     * The method overrides "engineSetSeed(byte[])" in class SecureRandomSpi.
     *
     * @param seed - byte array
     * @throws NullPointerException - if null is passed to the "seed" argument
     */
    private void setSeed(byte[] seed) {
        if (seed == null) {
            throw new NullPointerException("seed == null");
        }
        if (state == NEXT_BYTES) { // first setSeed after NextBytes; restoring hash
            System.arraycopy(copies, HASHCOPY_OFFSET, this.seed, HASH_OFFSET,
                    EXTRAFRAME_OFFSET);
        }
        state = SET_SEED;
        if (seed.length != 0) {
            updateSeed(seed);
        }
    }

    /**
     * Writes random bytes into an array supplied.
     * Bits in a byte are from left to right. <BR>
     * <p>
     * To generate random bytes, the "expansion of source bits" method is used,
     * that is,
     * the current seed with a 64-bit counter appended is used to compute new bits.
     * The counter is incremented by 1 for each 20-byte output. <BR>
     * <p>
     * The method overrides engineNextBytes in class SecureRandomSpi.
     *
     * @param bytes - byte array to be filled in with bytes
     * @throws NullPointerException - if null is passed to the "bytes" argument
     */
    protected synchronized void nextBytes(byte[] bytes) {
        int i, n;
        long bits; // number of bits required by Secure Hash Standard
        int nextByteToReturn; // index of ready bytes in "bytes" array
        int lastWord; // index of last word in frame containing bytes
        // This is a bug since words are 4 bytes. Android used to keep it this way for backward
        // compatibility.
        final int extrabytes = 7;// # of bytes to add in order to computer # of 8 byte words
        if (bytes == null) {
            throw new NullPointerException("bytes == null");
        }
        // This is a bug since extraBytes == 7 instead of 3. Android used to keep it this way for
        // backward compatibility.
        lastWord = seed[BYTES_OFFSET] == 0 ? 0
                : (seed[BYTES_OFFSET] + extrabytes) >> 3 - 1;
        if (state == UNDEFINED) {
            throw new IllegalStateException("No seed supplied!");
        } else if (state == SET_SEED) {
            System.arraycopy(seed, HASH_OFFSET, copies, HASHCOPY_OFFSET,
                    EXTRAFRAME_OFFSET);
            // possible cases for 64-byte frame:
            //
            // seed bytes < 48      - remaining bytes are enough for all, 8 counter bytes,
            //                        0x80, and 8 seedLength bytes; no extra frame required
            // 48 < seed bytes < 56 - remaining 9 bytes are for 0x80 and 8 counter bytes
            //                        extra frame contains only seedLength value at the end
            // seed bytes > 55      - extra frame contains both counter's bytes
            //                        at the beginning and seedLength value at the end;
            //                        note, that beginning extra bytes are not more than 8,
            //                        that is, only 2 extra words may be used
            // no need to set to "0" 3 words after "lastWord" and
            // more than two words behind frame
            for (i = lastWord + 3; i < FRAME_LENGTH + 2; i++) {
                seed[i] = 0;
            }
            bits = (seedLength << 3) + 64; // transforming # of bytes into # of bits
            // putting # of bits into two last words (14,15) of 16 word frame in
            // seed or copies array depending on total length after padding
            if (seed[BYTES_OFFSET] < MAX_BYTES) {
                seed[14] = (int) (bits >>> 32);
                seed[15] = (int) (bits & 0xFFFFFFFF);
            } else {
                copies[EXTRAFRAME_OFFSET + 14] = (int) (bits >>> 32);
                copies[EXTRAFRAME_OFFSET + 15] = (int) (bits & 0xFFFFFFFF);
            }
            nextBIndex = HASHBYTES_TO_USE; // skipping remaining random bits
        }
        state = NEXT_BYTES;
        if (bytes.length == 0) {
            return;
        }
        nextByteToReturn = 0;
        // possibly not all of HASHBYTES_TO_USE bytes were used previous time
        n = (HASHBYTES_TO_USE - nextBIndex) < (bytes.length - nextByteToReturn) ? HASHBYTES_TO_USE
                - nextBIndex
                : bytes.length - nextByteToReturn;
        if (n > 0) {
            System.arraycopy(nextBytes, nextBIndex, bytes, nextByteToReturn, n);
            nextBIndex += n;
            nextByteToReturn += n;
        }
        if (nextByteToReturn >= bytes.length) {
            return; // return because "bytes[]" are filled in
        }
        n = seed[BYTES_OFFSET] & 0x03;
        for (; ; ) {
            if (n == 0) {
                seed[lastWord] = (int) (counter >>> 32);
                seed[lastWord + 1] = (int) (counter & 0xFFFFFFFF);
                seed[lastWord + 2] = END_FLAGS[0];
            } else {
                seed[lastWord] |= (int) ((counter >>> RIGHT1[n]) & MASK[n]);
                seed[lastWord + 1] = (int) ((counter >>> RIGHT2[n]) & 0xFFFFFFFF);
                seed[lastWord + 2] = (int) ((counter << LEFT[n]) | END_FLAGS[n]);
            }
            if (seed[BYTES_OFFSET] > MAX_BYTES) {
                copies[EXTRAFRAME_OFFSET] = seed[FRAME_LENGTH];
                copies[EXTRAFRAME_OFFSET + 1] = seed[FRAME_LENGTH + 1];
            }
            computeHash(seed);
            if (seed[BYTES_OFFSET] > MAX_BYTES) {
                System.arraycopy(seed, 0, copies, FRAME_OFFSET, FRAME_LENGTH);
                System.arraycopy(copies, EXTRAFRAME_OFFSET, seed, 0,
                        FRAME_LENGTH);
                computeHash(seed);
                System.arraycopy(copies, FRAME_OFFSET, seed, 0, FRAME_LENGTH);
            }
            counter++;
            int j = 0;
            for (i = 0; i < EXTRAFRAME_OFFSET; i++) {
                int k = seed[HASH_OFFSET + i];
                nextBytes[j] = (byte) (k >>> 24); // getting first  byte from left
                nextBytes[j + 1] = (byte) (k >>> 16); // getting second byte from left
                nextBytes[j + 2] = (byte) (k >>> 8); // getting third  byte from left
                nextBytes[j + 3] = (byte) (k); // getting fourth byte from left
                j += 4;
            }
            nextBIndex = 0;
            j = HASHBYTES_TO_USE < (bytes.length - nextByteToReturn) ? HASHBYTES_TO_USE
                    : bytes.length - nextByteToReturn;
            if (j > 0) {
                System.arraycopy(nextBytes, 0, bytes, nextByteToReturn, j);
                nextByteToReturn += j;
                nextBIndex += j;
            }
            if (nextByteToReturn >= bytes.length) {
                break;
            }
        }
    }

    /**
     * The method generates a 160 bit hash value using
     * a 512 bit message stored in first 16 words of int[] array argument and
     * current hash value stored in five words, beginning OFFSET+1, of the array argument.
     * Computation is done according to SHA-1 algorithm.
     * <p>
     * The resulting hash value replaces the previous hash value in the array;
     * original bits of the message are not preserved.
     * <p>
     * No checks on argument supplied, that is,
     * a calling method is responsible for such checks.
     * In case of incorrect array passed to the method
     * either NPE or IndexOutOfBoundException gets thrown by JVM.
     *
     * @params arrW - integer array; arrW.length >= (BYTES_OFFSET+6); <BR>
     * only first (BYTES_OFFSET+6) words are used
     */
    private static void computeHash(int[] arrW) {
        int a = arrW[HASH_OFFSET];
        int b = arrW[HASH_OFFSET + 1];
        int c = arrW[HASH_OFFSET + 2];
        int d = arrW[HASH_OFFSET + 3];
        int e = arrW[HASH_OFFSET + 4];
        int temp;
        // In this implementation the "d. For t = 0 to 79 do" loop
        // is split into four loops. The following constants:
        //     K = 5A827999   0 <= t <= 19
        //     K = 6ED9EBA1  20 <= t <= 39
        //     K = 8F1BBCDC  40 <= t <= 59
        //     K = CA62C1D6  60 <= t <= 79
        // are hex literals in the loops.
        for (int t = 16; t < 80; t++) {
            temp = arrW[t - 3] ^ arrW[t - 8] ^ arrW[t - 14] ^ arrW[t - 16];
            arrW[t] = (temp << 1) | (temp >>> 31);
        }
        for (int t = 0; t < 20; t++) {
            temp = ((a << 5) | (a >>> 27)) +
                    ((b & c) | ((~b) & d)) +
                    (e + arrW[t] + 0x5A827999);
            e = d;
            d = c;
            c = (b << 30) | (b >>> 2);
            b = a;
            a = temp;
        }
        for (int t = 20; t < 40; t++) {
            temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0x6ED9EBA1);
            e = d;
            d = c;
            c = (b << 30) | (b >>> 2);
            b = a;
            a = temp;
        }
        for (int t = 40; t < 60; t++) {
            temp = ((a << 5) | (a >>> 27)) + ((b & c) | (b & d) | (c & d)) +
                    (e + arrW[t] + 0x8F1BBCDC);
            e = d;
            d = c;
            c = (b << 30) | (b >>> 2);
            b = a;
            a = temp;
        }
        for (int t = 60; t < 80; t++) {
            temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0xCA62C1D6);
            e = d;
            d = c;
            c = (b << 30) | (b >>> 2);
            b = a;
            a = temp;
        }
        arrW[HASH_OFFSET] += a;
        arrW[HASH_OFFSET + 1] += b;
        arrW[HASH_OFFSET + 2] += c;
        arrW[HASH_OFFSET + 3] += d;
        arrW[HASH_OFFSET + 4] += e;
    }

    /**
     * The method appends new bytes to existing ones
     * within limit of a frame of 64 bytes (16 words).
     * <p>
     * Once a length of accumulated bytes reaches the limit
     * the "computeHash(int[])" method is invoked on the array to compute updated hash,
     * and the number of bytes in the frame is set to 0.
     * Thus, after appending all bytes, the array contain only those bytes
     * that were not used in computing final hash value yet.
     * <p>
     * No checks on arguments passed to the method, that is,
     * a calling method is responsible for such checks.
     *
     * @params intArray  - int array containing bytes to which to append;
     * intArray.length >= (BYTES_OFFSET+6)
     * @params byteInput - array of bytes to use for the update
     * @params from      - the offset to start in the "byteInput" array
     * @params to        - a number of the last byte in the input array to use,
     * that is, for first byte "to"==0, for last byte "to"==input.length-1
     */
    private static void updateHash(int[] intArray, byte[] byteInput, int fromByte, int toByte) {
        // As intArray contains a packed bytes
        // the buffer's index is in the intArray[BYTES_OFFSET] element
        int index = intArray[BYTES_OFFSET];
        int i = fromByte;
        int maxWord;
        int nBytes;
        int wordIndex = index >> 2;
        int byteIndex = index & 0x03;
        intArray[BYTES_OFFSET] = (index + toByte - fromByte + 1) & 077;
        // In general case there are 3 stages :
        // - appending bytes to non-full word,
        // - writing 4 bytes into empty words,
        // - writing less than 4 bytes in last word
        if (byteIndex != 0) {       // appending bytes in non-full word (as if)
            for (; (i <= toByte) && (byteIndex < 4); i++) {
                intArray[wordIndex] |= (byteInput[i] & 0xFF) << ((3 - byteIndex) << 3);
                byteIndex++;
            }
            if (byteIndex == 4) {
                wordIndex++;
                if (wordIndex == 16) {          // intArray is full, computing hash
                    computeHash(intArray);
                    wordIndex = 0;
                }
            }
            if (i > toByte) {                 // all input bytes appended
                return;
            }
        }
        // writing full words
        maxWord = (toByte - i + 1) >> 2;           // # of remaining full words, may be "0"
        for (int k = 0; k < maxWord; k++) {
            intArray[wordIndex] = (((int) byteInput[i] & 0xFF) << 24) |
                    (((int) byteInput[i + 1] & 0xFF) << 16) |
                    (((int) byteInput[i + 2] & 0xFF) << 8) |
                    (((int) byteInput[i + 3] & 0xFF));
            i += 4;
            wordIndex++;
            if (wordIndex < 16) {     // buffer is not full yet
                continue;
            }
            computeHash(intArray);      // buffer is full, computing hash
            wordIndex = 0;
        }
        // writing last incomplete word
        // after writing free byte positions are set to "0"s
        nBytes = toByte - i + 1;
        if (nBytes != 0) {
            int w = ((int) byteInput[i] & 0xFF) << 24;
            if (nBytes != 1) {
                w |= ((int) byteInput[i + 1] & 0xFF) << 16;
                if (nBytes != 2) {
                    w |= ((int) byteInput[i + 2] & 0xFF) << 8;
                }
            }
            intArray[wordIndex] = w;
        }
        return;
    }

}