Blame view

src/com/ectrip/cyt/utils/InsecureSHA1PRNGKeyDerivator.java 20.6 KB
3c2353cd   杜方   1、畅游通核销app源码提交;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
  package com.ectrip.cyt.utils;
  
  /**
   * @author: WJF
   * @date: 2020-08-18 14:34 星期二
   * @description: 适配 android9.0 以上的加解密方式
   */
  public class InsecureSHA1PRNGKeyDerivator {
      /**
       * Only public method. Derive a key from the given seed.
       * <p>
       * Use this method only to retrieve encrypted data that couldn't be retrieved otherwise.
       *
       * @param seed           seed used for the random generator, usually coming from a password
       * @param keySizeInBytes length of the array returned
       */
      public static byte[] deriveInsecureKey(byte[] seed, int keySizeInBytes) {
          InsecureSHA1PRNGKeyDerivator derivator = new InsecureSHA1PRNGKeyDerivator();
          derivator.setSeed(seed);
          byte[] key = new byte[keySizeInBytes];
          derivator.nextBytes(key);
          return key;
      }
  
      // constants to use in expressions operating on bytes in int and long variables:
      // END_FLAGS - final bytes in words to append to message;
      //             see "ch.5.1 Padding the Message, FIPS 180-2"
      // RIGHT1    - shifts to right for left half of long
      // RIGHT2    - shifts to right for right half of long
      // LEFT      - shifts to left for bytes
      // MASK      - mask to select counter's bytes after shift to right
      private static final int[] END_FLAGS = {0x80000000, 0x800000, 0x8000, 0x80};
      private static final int[] RIGHT1 = {0, 40, 48, 56};
      private static final int[] RIGHT2 = {0, 8, 16, 24};
      private static final int[] LEFT = {0, 24, 16, 8};
      private static final int[] MASK = {0xFFFFFFFF, 0x00FFFFFF, 0x0000FFFF,
              0x000000FF};
      // HASHBYTES_TO_USE defines # of bytes returned by "computeHash(byte[])"
      // to use to form byte array returning by the "nextBytes(byte[])" method
      // Note, that this implementation uses more bytes than it is defined
      // in the above specification.
      private static final int HASHBYTES_TO_USE = 20;
      // value of 16 defined in the "SECURE HASH STANDARD", FIPS PUB 180-2
      private static final int FRAME_LENGTH = 16;
      // miscellaneous constants defined in this implementation:
      // COUNTER_BASE - initial value to set to "counter" before computing "nextBytes(..)";
      //                note, that the exact value is not defined in STANDARD
      // HASHCOPY_OFFSET   - offset for copy of current hash in "copies" array
      // EXTRAFRAME_OFFSET - offset for extra frame in "copies" array;
      //                     as the extra frame follows the current hash frame,
      //                     EXTRAFRAME_OFFSET is equal to length of current hash frame
      // FRAME_OFFSET      - offset for frame in "copies" array
      // MAX_BYTES - maximum # of seed bytes processing which doesn't require extra frame
      //             see (1) comments on usage of "seed" array below and
      //             (2) comments in "engineNextBytes(byte[])" method
      //
      // UNDEFINED  - three states of engine; initially its state is "UNDEFINED"
      // SET_SEED     call to "engineSetSeed"  sets up "SET_SEED" state,
      // NEXT_BYTES   call to "engineNextByte" sets up "NEXT_BYTES" state
      private static final int COUNTER_BASE = 0;
      private static final int HASHCOPY_OFFSET = 0;
      private static final int EXTRAFRAME_OFFSET = 5;
      private static final int FRAME_OFFSET = 21;
      private static final int MAX_BYTES = 48;
      private static final int UNDEFINED = 0;
      private static final int SET_SEED = 1;
      private static final int NEXT_BYTES = 2;
      // Structure of "seed" array:
      // -  0-79 - words for computing hash
      // - 80    - unused
      // - 81    - # of seed bytes in current seed frame
      // - 82-86 - 5 words, current seed hash
      private transient int[] seed;
      // total length of seed bytes, including all processed
      private transient long seedLength;
      // Structure of "copies" array
      // -  0-4  - 5 words, copy of current seed hash
      // -  5-20 - extra 16 words frame;
      //           is used if final padding exceeds 512-bit length
      // - 21-36 - 16 word frame to store a copy of remaining bytes
      private transient int[] copies;
      // ready "next" bytes; needed because words are returned
      private transient byte[] nextBytes;
      // index of used bytes in "nextBytes" array
      private transient int nextBIndex;
      // variable required according to "SECURE HASH STANDARD"
      private transient long counter;
      // contains int value corresponding to engine's current state
      private transient int state;
      /**
       * constant defined in "SECURE HASH STANDARD"
       */
      private static final int H0 = 0x67452301;
      /**
       * constant defined in "SECURE HASH STANDARD"
       */
      private static final int H1 = 0xEFCDAB89;
      /**
       * constant defined in "SECURE HASH STANDARD"
       */
      private static final int H2 = 0x98BADCFE;
      /**
       * constant defined in "SECURE HASH STANDARD"
       */
      private static final int H3 = 0x10325476;
      /**
       * constant defined in "SECURE HASH STANDARD"
       */
      private static final int H4 = 0xC3D2E1F0;
      /**
       * offset in buffer to store number of bytes in 0-15 word frame
       */
      private static final int BYTES_OFFSET = 81;
      /**
       * offset in buffer to store current hash value
       */
      private static final int HASH_OFFSET = 82;
      /**
       * # of bytes in H0-H4 words; <BR>
       * in this implementation # is set to 20 (in general # varies from 1 to 20)
       */
      private static final int DIGEST_LENGTH = 20;
  
      // The "seed" array is used to compute both "current seed hash" and "next bytes".
      //
      // As the "SHA1" algorithm computes a hash of entire seed by splitting it into
      // a number of the 512-bit length frames (512 bits = 64 bytes = 16 words),
      // "current seed hash" is a hash (5 words, 20 bytes) for all previous full frames;
      // remaining bytes are stored in the 0-15 word frame of the "seed" array.
      //
      // As for calculating "next bytes",
      // both remaining bytes and "current seed hash" are used,
      // to preserve the latter for following "setSeed(..)" commands,
      // the following technique is used:
      // - upon getting "nextBytes(byte[])" invoked, single or first in row,
      //   which requires computing new hash, that is,
      //   there is no more bytes remaining from previous "next bytes" computation,
      //   remaining bytes are copied into the 21-36 word frame of the "copies" array;
      // - upon getting "setSeed(byte[])" invoked, single or first in row,
      //   remaining bytes are copied back.
      private InsecureSHA1PRNGKeyDerivator() {
          seed = new int[HASH_OFFSET + EXTRAFRAME_OFFSET];
          seed[HASH_OFFSET] = H0;
          seed[HASH_OFFSET + 1] = H1;
          seed[HASH_OFFSET + 2] = H2;
          seed[HASH_OFFSET + 3] = H3;
          seed[HASH_OFFSET + 4] = H4;
          seedLength = 0;
          copies = new int[2 * FRAME_LENGTH + EXTRAFRAME_OFFSET];
          nextBytes = new byte[DIGEST_LENGTH];
          nextBIndex = HASHBYTES_TO_USE;
          counter = COUNTER_BASE;
          state = UNDEFINED;
      }
  
      /*
       * The method invokes the SHA1Impl's "updateHash(..)" method
       * to update current seed frame and
       * to compute new intermediate hash value if the frame is full.
       *
       * After that it computes a length of whole seed.
       */
      private void updateSeed(byte[] bytes) {
          // on call:   "seed" contains current bytes and current hash;
          // on return: "seed" contains new current bytes and possibly new current hash
          //            if after adding, seed bytes overfill its buffer
          updateHash(seed, bytes, 0, bytes.length - 1);
          seedLength += bytes.length;
      }
  
      /**
       * Changes current seed by supplementing a seed argument to the current seed,
       * if this already set;
       * the argument is used as first seed otherwise. <BR>
       * <p>
       * The method overrides "engineSetSeed(byte[])" in class SecureRandomSpi.
       *
       * @param seed - byte array
       * @throws NullPointerException - if null is passed to the "seed" argument
       */
      private void setSeed(byte[] seed) {
          if (seed == null) {
              throw new NullPointerException("seed == null");
          }
          if (state == NEXT_BYTES) { // first setSeed after NextBytes; restoring hash
              System.arraycopy(copies, HASHCOPY_OFFSET, this.seed, HASH_OFFSET,
                      EXTRAFRAME_OFFSET);
          }
          state = SET_SEED;
          if (seed.length != 0) {
              updateSeed(seed);
          }
      }
  
      /**
       * Writes random bytes into an array supplied.
       * Bits in a byte are from left to right. <BR>
       * <p>
       * To generate random bytes, the "expansion of source bits" method is used,
       * that is,
       * the current seed with a 64-bit counter appended is used to compute new bits.
       * The counter is incremented by 1 for each 20-byte output. <BR>
       * <p>
       * The method overrides engineNextBytes in class SecureRandomSpi.
       *
       * @param bytes - byte array to be filled in with bytes
       * @throws NullPointerException - if null is passed to the "bytes" argument
       */
      protected synchronized void nextBytes(byte[] bytes) {
          int i, n;
          long bits; // number of bits required by Secure Hash Standard
          int nextByteToReturn; // index of ready bytes in "bytes" array
          int lastWord; // index of last word in frame containing bytes
          // This is a bug since words are 4 bytes. Android used to keep it this way for backward
          // compatibility.
          final int extrabytes = 7;// # of bytes to add in order to computer # of 8 byte words
          if (bytes == null) {
              throw new NullPointerException("bytes == null");
          }
          // This is a bug since extraBytes == 7 instead of 3. Android used to keep it this way for
          // backward compatibility.
          lastWord = seed[BYTES_OFFSET] == 0 ? 0
                  : (seed[BYTES_OFFSET] + extrabytes) >> 3 - 1;
          if (state == UNDEFINED) {
              throw new IllegalStateException("No seed supplied!");
          } else if (state == SET_SEED) {
              System.arraycopy(seed, HASH_OFFSET, copies, HASHCOPY_OFFSET,
                      EXTRAFRAME_OFFSET);
              // possible cases for 64-byte frame:
              //
              // seed bytes < 48      - remaining bytes are enough for all, 8 counter bytes,
              //                        0x80, and 8 seedLength bytes; no extra frame required
              // 48 < seed bytes < 56 - remaining 9 bytes are for 0x80 and 8 counter bytes
              //                        extra frame contains only seedLength value at the end
              // seed bytes > 55      - extra frame contains both counter's bytes
              //                        at the beginning and seedLength value at the end;
              //                        note, that beginning extra bytes are not more than 8,
              //                        that is, only 2 extra words may be used
              // no need to set to "0" 3 words after "lastWord" and
              // more than two words behind frame
              for (i = lastWord + 3; i < FRAME_LENGTH + 2; i++) {
                  seed[i] = 0;
              }
              bits = (seedLength << 3) + 64; // transforming # of bytes into # of bits
              // putting # of bits into two last words (14,15) of 16 word frame in
              // seed or copies array depending on total length after padding
              if (seed[BYTES_OFFSET] < MAX_BYTES) {
                  seed[14] = (int) (bits >>> 32);
                  seed[15] = (int) (bits & 0xFFFFFFFF);
              } else {
                  copies[EXTRAFRAME_OFFSET + 14] = (int) (bits >>> 32);
                  copies[EXTRAFRAME_OFFSET + 15] = (int) (bits & 0xFFFFFFFF);
              }
              nextBIndex = HASHBYTES_TO_USE; // skipping remaining random bits
          }
          state = NEXT_BYTES;
          if (bytes.length == 0) {
              return;
          }
          nextByteToReturn = 0;
          // possibly not all of HASHBYTES_TO_USE bytes were used previous time
          n = (HASHBYTES_TO_USE - nextBIndex) < (bytes.length - nextByteToReturn) ? HASHBYTES_TO_USE
                  - nextBIndex
                  : bytes.length - nextByteToReturn;
          if (n > 0) {
              System.arraycopy(nextBytes, nextBIndex, bytes, nextByteToReturn, n);
              nextBIndex += n;
              nextByteToReturn += n;
          }
          if (nextByteToReturn >= bytes.length) {
              return; // return because "bytes[]" are filled in
          }
          n = seed[BYTES_OFFSET] & 0x03;
          for (; ; ) {
              if (n == 0) {
                  seed[lastWord] = (int) (counter >>> 32);
                  seed[lastWord + 1] = (int) (counter & 0xFFFFFFFF);
                  seed[lastWord + 2] = END_FLAGS[0];
              } else {
                  seed[lastWord] |= (int) ((counter >>> RIGHT1[n]) & MASK[n]);
                  seed[lastWord + 1] = (int) ((counter >>> RIGHT2[n]) & 0xFFFFFFFF);
                  seed[lastWord + 2] = (int) ((counter << LEFT[n]) | END_FLAGS[n]);
              }
              if (seed[BYTES_OFFSET] > MAX_BYTES) {
                  copies[EXTRAFRAME_OFFSET] = seed[FRAME_LENGTH];
                  copies[EXTRAFRAME_OFFSET + 1] = seed[FRAME_LENGTH + 1];
              }
              computeHash(seed);
              if (seed[BYTES_OFFSET] > MAX_BYTES) {
                  System.arraycopy(seed, 0, copies, FRAME_OFFSET, FRAME_LENGTH);
                  System.arraycopy(copies, EXTRAFRAME_OFFSET, seed, 0,
                          FRAME_LENGTH);
                  computeHash(seed);
                  System.arraycopy(copies, FRAME_OFFSET, seed, 0, FRAME_LENGTH);
              }
              counter++;
              int j = 0;
              for (i = 0; i < EXTRAFRAME_OFFSET; i++) {
                  int k = seed[HASH_OFFSET + i];
                  nextBytes[j] = (byte) (k >>> 24); // getting first  byte from left
                  nextBytes[j + 1] = (byte) (k >>> 16); // getting second byte from left
                  nextBytes[j + 2] = (byte) (k >>> 8); // getting third  byte from left
                  nextBytes[j + 3] = (byte) (k); // getting fourth byte from left
                  j += 4;
              }
              nextBIndex = 0;
              j = HASHBYTES_TO_USE < (bytes.length - nextByteToReturn) ? HASHBYTES_TO_USE
                      : bytes.length - nextByteToReturn;
              if (j > 0) {
                  System.arraycopy(nextBytes, 0, bytes, nextByteToReturn, j);
                  nextByteToReturn += j;
                  nextBIndex += j;
              }
              if (nextByteToReturn >= bytes.length) {
                  break;
              }
          }
      }
  
      /**
       * The method generates a 160 bit hash value using
       * a 512 bit message stored in first 16 words of int[] array argument and
       * current hash value stored in five words, beginning OFFSET+1, of the array argument.
       * Computation is done according to SHA-1 algorithm.
       * <p>
       * The resulting hash value replaces the previous hash value in the array;
       * original bits of the message are not preserved.
       * <p>
       * No checks on argument supplied, that is,
       * a calling method is responsible for such checks.
       * In case of incorrect array passed to the method
       * either NPE or IndexOutOfBoundException gets thrown by JVM.
       *
       * @params arrW - integer array; arrW.length >= (BYTES_OFFSET+6); <BR>
       * only first (BYTES_OFFSET+6) words are used
       */
      private static void computeHash(int[] arrW) {
          int a = arrW[HASH_OFFSET];
          int b = arrW[HASH_OFFSET + 1];
          int c = arrW[HASH_OFFSET + 2];
          int d = arrW[HASH_OFFSET + 3];
          int e = arrW[HASH_OFFSET + 4];
          int temp;
          // In this implementation the "d. For t = 0 to 79 do" loop
          // is split into four loops. The following constants:
          //     K = 5A827999   0 <= t <= 19
          //     K = 6ED9EBA1  20 <= t <= 39
          //     K = 8F1BBCDC  40 <= t <= 59
          //     K = CA62C1D6  60 <= t <= 79
          // are hex literals in the loops.
          for (int t = 16; t < 80; t++) {
              temp = arrW[t - 3] ^ arrW[t - 8] ^ arrW[t - 14] ^ arrW[t - 16];
              arrW[t] = (temp << 1) | (temp >>> 31);
          }
          for (int t = 0; t < 20; t++) {
              temp = ((a << 5) | (a >>> 27)) +
                      ((b & c) | ((~b) & d)) +
                      (e + arrW[t] + 0x5A827999);
              e = d;
              d = c;
              c = (b << 30) | (b >>> 2);
              b = a;
              a = temp;
          }
          for (int t = 20; t < 40; t++) {
              temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0x6ED9EBA1);
              e = d;
              d = c;
              c = (b << 30) | (b >>> 2);
              b = a;
              a = temp;
          }
          for (int t = 40; t < 60; t++) {
              temp = ((a << 5) | (a >>> 27)) + ((b & c) | (b & d) | (c & d)) +
                      (e + arrW[t] + 0x8F1BBCDC);
              e = d;
              d = c;
              c = (b << 30) | (b >>> 2);
              b = a;
              a = temp;
          }
          for (int t = 60; t < 80; t++) {
              temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0xCA62C1D6);
              e = d;
              d = c;
              c = (b << 30) | (b >>> 2);
              b = a;
              a = temp;
          }
          arrW[HASH_OFFSET] += a;
          arrW[HASH_OFFSET + 1] += b;
          arrW[HASH_OFFSET + 2] += c;
          arrW[HASH_OFFSET + 3] += d;
          arrW[HASH_OFFSET + 4] += e;
      }
  
      /**
       * The method appends new bytes to existing ones
       * within limit of a frame of 64 bytes (16 words).
       * <p>
       * Once a length of accumulated bytes reaches the limit
       * the "computeHash(int[])" method is invoked on the array to compute updated hash,
       * and the number of bytes in the frame is set to 0.
       * Thus, after appending all bytes, the array contain only those bytes
       * that were not used in computing final hash value yet.
       * <p>
       * No checks on arguments passed to the method, that is,
       * a calling method is responsible for such checks.
       *
       * @params intArray  - int array containing bytes to which to append;
       * intArray.length >= (BYTES_OFFSET+6)
       * @params byteInput - array of bytes to use for the update
       * @params from      - the offset to start in the "byteInput" array
       * @params to        - a number of the last byte in the input array to use,
       * that is, for first byte "to"==0, for last byte "to"==input.length-1
       */
      private static void updateHash(int[] intArray, byte[] byteInput, int fromByte, int toByte) {
          // As intArray contains a packed bytes
          // the buffer's index is in the intArray[BYTES_OFFSET] element
          int index = intArray[BYTES_OFFSET];
          int i = fromByte;
          int maxWord;
          int nBytes;
          int wordIndex = index >> 2;
          int byteIndex = index & 0x03;
          intArray[BYTES_OFFSET] = (index + toByte - fromByte + 1) & 077;
          // In general case there are 3 stages :
          // - appending bytes to non-full word,
          // - writing 4 bytes into empty words,
          // - writing less than 4 bytes in last word
          if (byteIndex != 0) {       // appending bytes in non-full word (as if)
              for (; (i <= toByte) && (byteIndex < 4); i++) {
                  intArray[wordIndex] |= (byteInput[i] & 0xFF) << ((3 - byteIndex) << 3);
                  byteIndex++;
              }
              if (byteIndex == 4) {
                  wordIndex++;
                  if (wordIndex == 16) {          // intArray is full, computing hash
                      computeHash(intArray);
                      wordIndex = 0;
                  }
              }
              if (i > toByte) {                 // all input bytes appended
                  return;
              }
          }
          // writing full words
          maxWord = (toByte - i + 1) >> 2;           // # of remaining full words, may be "0"
          for (int k = 0; k < maxWord; k++) {
              intArray[wordIndex] = (((int) byteInput[i] & 0xFF) << 24) |
                      (((int) byteInput[i + 1] & 0xFF) << 16) |
                      (((int) byteInput[i + 2] & 0xFF) << 8) |
                      (((int) byteInput[i + 3] & 0xFF));
              i += 4;
              wordIndex++;
              if (wordIndex < 16) {     // buffer is not full yet
                  continue;
              }
              computeHash(intArray);      // buffer is full, computing hash
              wordIndex = 0;
          }
          // writing last incomplete word
          // after writing free byte positions are set to "0"s
          nBytes = toByte - i + 1;
          if (nBytes != 0) {
              int w = ((int) byteInput[i] & 0xFF) << 24;
              if (nBytes != 1) {
                  w |= ((int) byteInput[i + 1] & 0xFF) << 16;
                  if (nBytes != 2) {
                      w |= ((int) byteInput[i + 2] & 0xFF) << 8;
                  }
              }
              intArray[wordIndex] = w;
          }
          return;
      }
  
  }